Friday 11 October 2013

ELA_06_INIT_Upstart

 INIT Upstart

In Red Hat Enterprise Linux 6, init from the sysvinit package has been replaced with Upstart, an event-based init system. This system handles the starting of tasks and services during boot, stopping them during shutdown and supervising them while the system is running. For more information on Upstart itself, refer to the init man page.

Processes are known to Upstart as jobs and are defined by files in the /etc/init directory. Upstart is very well documented via man pages. Command overview is in init and job syntax is described in init.

Upstart provides the following behavioral changes in Red Hat Enterprise Linux 6:


  • The /etc/inittab file is deprecated, and is now used only for setting up the default runlevel via the initdefault line. Other configuration is done via upstart jobs in the /etc/init directory.
  • The number of active tty consoles is now set by the ACTIVE_CONSOLES variable in /etc/sysconfig/init, which is read by the /etc/init/start-ttys.conf job. The default value is ACTIVE_CONSOLES=/dev/tty[1-6], which starts a getty on tty1 through tty6.
  • A serial getty is still automatically configured if the serial console is the primary system console. In prior releases, this was done by kudzu, which would edit /etc/inittab. In Red Hat Enterprise Linux 6, configuration of the primary serial console is handled by /etc/init/serial.conf.
  • To configure a getty running on a non-default serial console, you must now write an Upstart job instead of editing /etc/inittab. For example, if a getty on ttyS1 is desired, the following job file (/etc/init/serial-ttyS1.conf) would work:

    # This service maintains a getty on /dev/ttyS1. start on stopped rc RUNLEVEL=[2345] stop on starting runlevel [016] respawn exec /sbin/agetty /dev/ttyS1 115200 vt100-nav

As in prior releases, you should still make sure that ttyS1 is in /etc/securetty if you wish to allow root logins on this getty.

There are some features from prior releases that are not supported in the move to Upstart. Among these are:

  • Custom runlevels 7, 8 and 9. These custom runlevels can no longer be used.
  • Using /etc/shutdown.allow for defining who can shut the machine down.


Booting process:
The Linux system booting process consists 6 stages. 

1. BIOS

BIOS stands for Basic Input/Output System
Performs some system integrity checks
Searches, loads, and executes the boot loader program.
It looks for boot loader in floppy, cd-rom, or hard drive. You can press a key (typically F12 of F2, but it depends on your system) during the BIOS startup to change the boot sequence.
Once the boot loader program is detected and loaded into the memory, BIOS gives the control to it.
So, in simple terms BIOS loads and executes the MBR boot loader.

2. MBR
MBR stands for Master Boot Record.
It is located in the 1st sector of the bootable disk. Typically /dev/hda, or /dev/sda
MBR is less than 512 bytes in size. This has three components
      1. primary boot loader info in 1st 446 bytes
      2. partition table info in next 64 bytes
      3. mbr validation check in last 2 bytes.
It contains information about GRUB (or LILO in old systems).
So, in simple terms MBR loads and executes the GRUB boot loader.

3. GRUB
GRUB stands for Grand Unified Bootloader.
If you have multiple kernel images installed on your system, you can choose which one to be executed.
GRUB displays a splash screen, waits for few seconds, if you don’t enter anything, it loads the default kernel image as specified in the grub configuration file.
GRUB has the knowledge of the filesystem (the older Linux loader LILO didn’t understand filesystem).
Grub configuration file is /boot/grub/grub.conf (/etc/grub.conf is a link to this). The following is sample grub.conf of CentOS.
#boot=/dev/sda
default=0
timeout=5
splashimage=(hd0,0)/boot/grub/splash.xpm.gz
hiddenmenu
title CentOS (2.6.18-194.el5PAE)
        root (hd0,0)
        kernel /boot/vmlinuz-2.6.18-194.el5PAE ro root=LABEL=/
        initrd /boot/initrd-2.6.18-194.el5PAE.img

As you notice from the above info, it contains kernel and initrd image.
So, in simple terms GRUB just loads and executes Kernel and initrd images.

4. Kernel
Mounts the root file system as specified in the “root=” in grub.conf
Kernel executes the /sbin/init program
Since init was the 1st program to be executed by Linux Kernel, it has the process id (PID) of 1. Do a ‘ps -ef | grep init’ and check the pid.
initrd stands for Initial RAM Disk.
initrd is used by kernel as temporary root file system until kernel is booted and the real root file system is mounted. It also contains necessary drivers compiled inside, which helps it to access the hard drive partitions, and other hardware.

5. Init
Looks at the /etc/inittab file to decide the Linux run level. Following are the available run levels
  0 – halt
  1 – Single user mode
  2 – Multiuser, without NFS
  3 – Full multiuser mode
  4 – unused
  5 – X11
  6 – reboot
Init identifies the default initlevel from /etc/inittab and uses that to load all appropriate program.
Execute ‘grep initdefault /etc/inittab’ on your system to identify the default run level
If you want to get into trouble, you can set the default run level to 0 or 6. Since you know what 0 and 6 means, probably you might not do that.
Typically you would set the default run level to either 3 or 5.


6. Runlevel programs
  • When the Linux system is booting up, you might see various services getting started. For example, it might say “starting sendmail …. OK”. Those are the runlevel programs, executed from the run level directory as defined by your run level.
  • Depending on your default init level setting, the system will execute the programs from one of the following directories.
  • Run level 0 – /etc/rc.d/rc0.d/
  • Run level 1 – /etc/rc.d/rc1.d/
  • Run level 2 – /etc/rc.d/rc2.d/
  • Run level 3 – /etc/rc.d/rc3.d/
  • Run level 4 – /etc/rc.d/rc4.d/
  • Run level 5 – /etc/rc.d/rc5.d/
  • Run level 6 – /etc/rc.d/rc6.d/
  • Please note that there are also symbolic links available for these directory under /etc directly. So, /etc/rc0.d is linked to /etc/rc.d/rc0.d.
  • Under the /etc/rc.d/rc*.d/ directories, you would see programs that start with S and K.
  • Programs starts with S are used during startup. S for startup.
  • Programs starts with K are used during shutdown. K for kill.
  • There are numbers right next to S and K in the program names. Those are the sequence number in which the programs should be started or killed.
  • For example, S12syslog is to start the syslog deamon, which has the sequence number of 12. S80sendmail is to start the sendmail daemon, which has the sequence number of 80. So, syslog program will be started before sendmail.

No comments :

Post a Comment